C.U.SHAH UNIVERSITY **Summer Examination-2016**

Subject Name: Group Theory

	Subject (Code: 4SC05GTC1	Branch: B.Sc.(Mathematics)		
	Semester	: 5 Date : 25/04/2016	Time : 2:30 To 5:30	Marks : 70	
	Instructio (1) U (2) In (3) D (4) A	ns: Use of Programmable calculator & a nstructions written on main answer Draw neat diagrams and figures (if n Assume suitable data if needed.	any other electronic instrum book are strictly to be obey necessary) at right places.	ent is prohibited. ed.	
Q-1	a)	Attempt the following questions If <i>G</i> is a finite group of order <i>n</i> , for (i) $a^n = e$ (ii) $a^n = a^{-1}$ (iii) $a^n = a^{-1}$: or every $a \in G$, we have $a^n = a$ (iv) None		(14) (01)
	b)	If H_1 and H_2 are two subgroups of (i) $H_1 \cap H_2$ (ii) $H_1 \cup H_2$ (iii) H_1	f G, following is also a subgraph H_1 (iv) None	group of <i>G</i>	(01)
	c)	If $G = \{1, -1, i, -i\}$ is a multiplic (i) one (ii) two (iii) three (iv) f	cative group order of $-i$ is four		(01)
	d)	In a group G , for each element $a \in (i)$ no inverse (ii) a unique inver	∃ <i>G</i> there is se (iii) More than one inver	se (iv) None	(01)
	e)	Given $axa = b$ in G , x is equal to (i) $a^{-1}b$ (ii) $a^{-1}b^{-1}$ (iii) $a^{-1}b^{-1}$	$b^{-1}b^{-1}$ (iv) $a^{-1}b a^{-1}$		(01)
	f)	The inverse of an odd permutation (i) odd permutation (ii) Even Pe	n is rmutation (iii) Odd or ever	permutation	(01)
	g)	 (iv) None Every group of prime order is (i) cyclic (ii) Abelian (iii) sub 	 –group (iv) Normal group		(01)
	h)	If number of left cosets of <i>H</i> in <i>G</i> are <i>m</i> , which is correct answer? (i) $m \le n$ (ii) $m \ge n$ (iii) $m =$	are n and the number of right n (iv) None	ht costs of <i>H</i> in <i>G</i>	(01)
	i)	The permutation $\begin{pmatrix} 1 & 2 & 5 & 3 \\ 3 & 4 & 1 & 5 \\ (i) & (1 & 3)(1 & 5)(2 & 4) & (ii) & (1) & (2) & (3) \\ \end{pmatrix}$	$\binom{4}{2}$ is equal to 3) (iii) (135)(56) (iv) (1 4 2) (5 3)	(01)
	j)	A cycle of length two is called	(iii) disjoint cycle (iv) No	one	(01)
		F	Page 1 3		

	k)	Define: Group	(01)
	l)	Define: Subgroup	(01)
	m)	Define: Normal subgroup of group	(01)
	n)	State Cayley's theorem	(01)
Attempt	any f	our questions from Q-2 to Q-8	
Q-2		Attempt all questions	(14)
	a)	Prove that in a group G, the equations $a * x = b$ and $y * a = b$, where $a, b \in G$	(05)
		have unique solution	
	b)	Let * be a binary operation on a finite set G . If (i) * is associative and (ii) both right and left cancellation laws hold for * in G , prove that G is a group under *.	(05)
	c)	The set $G = \{a + b\sqrt{2} \mid a, b \in Q, a^2 + b^2 \neq 0\}$ of \mathbb{R} , prove that G is a group under usual multiplication of two numbers.	(04)
0-3		Attempt all questions	(14)
	a)	Prove that a finite nonempty subset H of a group G is a subgroup of G if it is closed under multiplication.	(05)
	b)	Prove that a group of prime order is cyclic.	(05)
	c)	If <i>H</i> is a subgroup of <i>G</i> then prove that the set $x^{-1}Hx = \{x^{-1}hx \mid h \in H\}$ is also a subgroup of <i>G</i> for $x \in G$.	(04)
0-4		Attempt all questions	(14)
χ.	a)	Prove that order of permutation is the least common multiple of the length of its	(07)
	,	disjoint cycles.	
	b)	Let the elements $f, g, h \in S_6$ where $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix}$ and $h = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 2 & 3 & 1 & 6 \end{pmatrix}$	(07)
		Obtain: (i) f^2 (ii) g^3 (iii) fg^2 (iv) h^{-1} (v) g^2h^{-1} (vi) fgf^{-1} .	
Q-5		Attempt all questions	(14)
	a)	Let H be a non empty subset of a group G then prove that following are equivalent.	(07)
		i. For every $a, b \in G$ if $a, b \in H$, then	
		a. $ab \in H$	
		b. $b^{-1} \in H$	
		iii. $ab^{-1}H$.	
	b)	State and prove Lagrange's theorem	(07)
Q-6		Attempt all questions	(14)
C C	a)	Suppose $o(a) = n$ for an element a in a group G. Then prove that	(05)
		(i) $o(a^p) \le o(a), p \in Z$	
		(ii) $o(a^{-1}) = o(a)$	
	• `	(iii) For a positive integer q with $(q, n) = 1$ then prove that $o(a^q) = o(a)$.	/ ^ =
	b)	Prove that an infinite cyclic group has exactly two generators.	(05)
	C)	Using Euler's theorem, find the remainder obtained on dividing 3^{230} by 14.	(04)

Page 2 || 3

Q-7		Attempt all questions	(14)
	a)	Prove that any two infinite cyclic groups are isomorphic.	(07)
b) State and prove first fundamental theorem of Homomorphism		State and prove first fundamental theorem of Homomorphism	(07)
Q-8	a)	Attempt all questions Let H be a non empty subset of a group G . If the product of two right cosets of H in G is again a right coset of H in G then prove that H is a normal subgroup of G .	(14) (05)
	b)	Let $G = (\mathbb{R}; +)$ and $G' = (\mathbb{R}_+; \cdot)$. Let $\varphi : G \to G'$ be defined as $\varphi(x) = e^x, x \in G$ then prove that φ is an isomorphism between G and G' .	(05)
	c)	Suppose $(G; \circ) \cong (G'; *)$. Then prove that if <i>G</i> is commutative then G' is commutative.	(04)

Page 3 || 3

