Subject Name: Group Theory

Subject Code: 4SC05GTC1
Branch: B.Sc.(Mathematics)
Semester: 5
Date : 25/04/2016
Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Attempt the following questions:

a) If G is a finite group of order n, for every $a \in G$, we have
(i) $a^{n}=e$ (ii) $a^{n}=a^{-1}$ (iii) $a^{n}=a$ (iv) None
b) If H_{1} and H_{2} are two subgroups of G, following is also a subgroup of G
(i) $H_{1} \cap H_{2}$ (ii) $H_{1} \cup H_{2}$ (iii) $H_{1} H_{2}$ (iv) None
c) If $G=\{1,-1, i,-i\}$ is a multiplicative group order of $-i$ is
(i) one (ii) two (iii) three (iv) four
d) In a group G, for each element $a \in G$ there is
(i) no inverse (ii) a unique inverse (iii) More than one inverse (iv) None
e) Given $a x a=b$ in G, x is equal to
(i) $a^{-1} b$ (ii) $a^{-1} b^{-1}$ (iii) $a^{-1} b^{-1} b^{-1}$ (iv) $a^{-1} b a^{-1}$
f) The inverse of an odd permutation is \qquad .
(i) odd permutation (ii) Even Permutation (iii) Odd or even permutation (iv) None
g) Every group of prime order is \qquad .
(i) cyclic
(ii) Abelian
(iii) sub -group
(iv) Normal group
h) If number of left cosets of H in G are n and the number of right costs of H in G are m, which is correct answer?
(i) $m \leq n$ (ii) $m \geq n$ (iii) $m=n$ (iv) None
i) The permutation $\left(\begin{array}{lllll}1 & 2 & 5 & 3 & 4 \\ 3 & 4 & 1 & 5 & 2\end{array}\right)$ is equal to
(i) (13)(15)(24)(ii) (1) (2) (3) (iii) (135)(56) (iv) (142)(53)
j) A cycle of length two is called \qquad .
(i) Remainder
(ii) Transposition (iii) disjoint cycle (iv) None

k) Define: Group

1) Define: Subgroup
m) Define: Normal subgroup of group
n) State Cayley's theorem

Attempt any four questions from $\mathbf{Q - 2}$ to $\mathbf{Q - 8}$

Q-4 Attempt all questions
a) Prove that order of permutation is the least common multiple of the length of its disjoint cycles.
b) Let the elements $f, g, h \in S_{6}$ where $f=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2\end{array}\right)$,
$g=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5\end{array}\right)$ and $h=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 2 & 3 & 1 & 6\end{array}\right)$
Obtain: (i) f^{2} (ii) g^{3} (iii) $f g^{2}$ (iv) h^{-1} (v) $g^{2} h^{-1}$ (vi) $f g f^{-1}$.

Q-6 Attempt all questions

a) Suppose $o(a)=n$ for an element a in a group G. Then prove that
(i) $o\left(a^{p}\right) \leq o(a), p \in Z$
(ii) $o\left(a^{-1}\right)=o(a)$
(iii) For a positive integer q with $(q, n)=1$ then prove that $o\left(a^{q}\right)=o(a)$.
b) Prove that an infinite cyclic group has exactly two generators.
c) Using Euler's theorem, find the remainder obtained on dividing 3^{256} by 14 .

Q-7
Attempt all questions
a) Prove that any two infinite cyclic groups are isomorphic.
b) State and prove first fundamental theorem of Homomorphism

Attempt all questions
a) Let H be a non empty subset of a group G. If the product of two right cosets of H in G is again a right coset of H in G then prove that H is a normal subgroup of G.
b) Let $G=(\mathbb{R} ;+)$ and $G^{\prime}=\left(\mathbb{R}_{+} ; \cdot\right)$. Let $\varphi: G \rightarrow G^{\prime}$ be defined as $\varphi(x)=e^{x}, x \in G$ then prove that φ is an isomorphism between G and G^{\prime}.
c) Suppose $\left(G ;^{\circ}\right) \cong\left(G^{\prime} ; *\right)$. Then prove that if G is commutative then G^{\prime} is commutative.

